بسم الله الرحمن الرحيم اللهم صل على محمد و آل محمد

ریاضی ۱ نیمسال دوم ۸۴

$$f(x)=$$
 $\begin{cases} ax-1 & x\leq 1 \\ x-b & 1< x< 1 \end{cases}$ پیوسته است $f(x)=$ $f(x)=$

الف
$$\frac{dy}{dx}$$
 م الکی $\frac{dy}{dx}$ م الکی $y = t - \frac{1}{t}$ م الکی $y = t - \frac{1}{t}$ برابر است با $\frac{t^{\mathsf{P}} - \mathsf{I}}{t^{\mathsf{P}} + \mathsf{I}}$... $\frac{t+\mathsf{I}}{t^{\mathsf{P}} - \mathsf{I}}$... $\frac{t+\mathsf{I}}{t^{\mathsf{P}} - \mathsf{I}}$... $\frac{t+\mathsf{I}}{t^{\mathsf{P}} - \mathsf{I}}$...

در این در نمودار، موازی محور X در نقطه $f(x) = rx^r + ax + b$ در نقطه و مماس بر نمودار، موازی محور x هاست . در این

$$b=r$$
 , $a=-r$... $b=1$, $a=\circ$... $b=0$, $a=-1$... $b=1$, $a=-\Lambda$...

درست است؟ $f(x) = xe^x$ درست است؟ ۷. کدام گزینه در مورد تابع

الف. در -1 مینیمم نسبی دارد و $(-7, -7e^{-7})$ نقطه عطف آن است.

ب. در 1 – ماکزیمم نسبی دارد و $(-r, -re^{-r})$ نقطه عطف آن است.

ج. در ۱ - مینیمم نسبی و در ۲ - ماکزیمم نسبی دارد.

د. در ۱- مینیمم نسبی و در ۲- مینیمم نسبی دارد.

یرابر است با:
$$\int_{\circ}^{1} \frac{x}{\sqrt{1+rx'}} dx \wedge \sqrt{\frac{m-1}{r}} = \sqrt{\frac{\sqrt{m}}{r}} = \sqrt{\frac{\sqrt{m}}{r}} = \sqrt{\frac{\sqrt{m}}{r}} = \sqrt{\frac{\sqrt{m}}{r}} = \sqrt{\frac{m}{r}} = \sqrt{\frac{m}{r}$$

برابر است با: $\frac{d}{dx} \int_{x}^{1} t^{m} dt$.۹

$$1-x^{\mu}$$
 ... $x^{\mu}+1$... $-x^{\mu}$... x^{μ}

. ۱۰ (م/∘ cos(sin⁻¹ ∘/۸) مرابر است با : الف. ۲/۰ ب. ۵/۰

برابر است با: $\int \frac{dx}{\sinh x + \cosh x}$ ۱۱.

$$e^{-x} + c$$
 . $-e^{x} + c$. $-e^{-x} + c$. $e^{x} + c$. It is

۱۲. مساحت ناحیهٔ محدود به نمودار تابع
$$y=x^{\mathsf{P}}-\mathsf{P} x$$
 و محور x ها برابر است با $\frac{\mathsf{P}}{\mathsf{P}}$. ب. $\frac{\mathsf{P}}{\mathsf{P}}$. ب. $\frac{\mathsf{P}}{\mathsf{P}}$.

۱۳. اگر ناحیه محدود به منحنی $x=\sqrt{\mathfrak{r}-x}$ و محورهای مختصات واقع در ربع اول، حول محور xها دوران کند، حجم جسم دوار حاصل برابر است با:

$$\frac{\mu\lambda}{\omega}\pi$$
 .. π .. π ... π ...

ال برابر است با: الn^r xdx .۱۴

$$x(\ln^{r} x + r \ln x - x) + c$$
 ... $x(\ln^{r} x - r \ln x + x) + c$... $x(\ln^{r} x - r \ln x + r) + c$... $x(\ln^{r} x - r \ln x + r) + c$...

الف.
$$\frac{1-x}{1-x} + c$$
 ... $\frac{1}{r} \ln \left| \frac{1+x}{1-x} \right| + c$... $\frac{1}{r} \ln \left| \frac{1+x}{1-x} \right| + c$... $\ln \left| \frac{1-x}{1+x} \right| + c$... $\ln \left| \frac{1+x}{1-x} \right| + c$...

$$+\infty$$
 . $\frac{\Delta}{r}$. $\frac{r}{r}$. $\frac{r}{r}$. $\frac{r}{r}$

ان نمودار منحنی $r=\sin heta$ در دستگاه مختصات قطبی عبارت است از ۱۷. نمودار منحنی

برابر است با
$$\frac{\mathbf{r} - \mathbf{r}i}{\mathbf{r} + i}$$
 برابر است با

$$\frac{1}{r} + \epsilon i$$
 . $r - \mu i$. $\epsilon - \frac{1}{r}i$. $\epsilon - \frac{1}{r}i$. $\epsilon - \mu i$. $\epsilon - \mu i$

۱۹. کدام سری همگراست؟

$$\sum_{n=1}^{\infty} \frac{n}{\mu^n} . \qquad \sum_{n=1}^{\infty} \frac{\mu^n}{\mu^n} . \varepsilon \qquad \sum_{n=1}^{\infty} \frac{1}{n} . \omega \qquad \sum_{n=1}^{\infty} \frac{n+1}{n} . \omega$$

۲۰. بازهٔ همگرایی سری
$$\sum_{n=1}^{\infty} \frac{x^n}{n^r}$$
 برابر است با $\left(-1\ ,\ 1\right)$. $\left(-1\ ,\ 1\right)$. $\left(-1\ ,\ 1\right)$.

سوالات تشريحي:

 $\frac{b-1}{b} < \ln b < b-1$ آنگاه b > 1 آنگاه دهید که هر گاه اb > 1 آنگاه دار میانگین، نشان دهید که هر گاه اb > 1 آنگاه b > 1 آنگاه در این مید که کوتاهترین فاصله را تا نقطه $\frac{9}{y}$ داشته باشد.

$$(b \neq \circ)$$
 را محاسبه کنید $\int \frac{a-x}{b^r + x^r} dx$.۳

۴. فرض كنيد Z عددى مختلط باشد به طورى كه |z+1|=|z+1|=|z+1| نشان دهيد كه قسمت حقيقى Z مساوى با صفر ست.

$$\sum_{n=1}^{\infty} \frac{a^n + b^n}{a^n b^n} = \frac{a + b - r}{(a - 1)(b - 1)}$$
 ه نشان بهید که اگر $a^n b^n$ اعدادی بزرگتر از اباشند، آنگاه

راهنمایی: سری را به دو قسمت تفکیک کرده و در مورد همگرایی هر کدام بحث کنید.

رياضي ١ نيمسال اول ٨٥

*استفاده از ماشین حساب مجاز نیست.

۱. برد رابطه
$$T = \{(x, y) | x^r + y^r = ra\}$$
 کدام است؟

$$[a,+\infty)$$
 .. $[a,b]$... $[a,b]$... $[a,b]$... $[a,b]$...

۲. در مورد تابع
$$f(x) = \frac{x}{1+x^r}$$
 , $x > 1$ کدام گزینه صحیح است؟

الف. بیکران است. ب. صعودی است. ج. نزولی است. د. مینیمم مطلق دارد.
$$\lim (\sqrt{x^r + rx} + x)$$
 برابر کدام است؟ $x \to -\infty$

الف. صفر ب. ۲ ج. ۲ د. ۴ الف. صفر ب. ۲ د. ۴ د.
$$\lim x \sin \frac{1}{x}$$
 د. ۶ د. ۴ $x \to +\infty$

الف. صفر ب. ا ج.
$$+\infty$$
 ج. $+\infty$ د. وجود ندارد. $\frac{d^{r}y}{dx^{r}}$ سپس $x=t^{r}+r$ کدام است؟ د. اگر $\frac{1}{r}$ د. $\frac{1}{r}$ د. $\frac{1}{r}$ د. وجود ندارد.

 $y = \sin x$ كدام گزينه است؟ $y = \sin x$ د. $\sin x$ د. $\sin x$ الف. $\sin x$ د. $\sin x$

الک کی نقطه بحرانی تابع f(x) = y باشد و f''(c) > 0 پس وی f(c) > 0 دارای: y = f(x) بست. الف ماکسیم مطلق است.

ج. مینیمم نسبی است. د. ماکسیمم نسبی است.

 $x^9 + \epsilon x^7 + \epsilon x^7 + \epsilon x^8 + \epsilon x^9 + \epsilon x^$

الف
$$\sum_{i=1}^{n} \frac{i^{p}}{n^{r}}$$
 برابر با کدام است $\sum_{i=1}^{n} \frac{i^{p}}{n^{r}}$ برابر با کدام است $\sum_{i=1}^{n} \frac{1}{n^{r}}$ برابر است با $\sum_{i=1}^{n} \frac{1}{n^{r}}$

۱٤ انتگرال tan x dx برابر است با:

 $\sec x \tan x + c$ $\tan x - x + c$ $\tan x + c$... $\sec x + c$...

۹۰. انتگرال
$$\frac{1}{\sqrt{x}\sqrt{1-x}}dx$$
 برابر کدام است

$$r\cos^{-1}\sqrt{x}+c.$$

۱۱. مقدار
$$dx$$
 کدام گزینه است؟ π کدام گزینه است؛ π د. π د. π الف. صفر ب π ب π د. π

۱۷. اگر Z_{μ}, Z_{μ} دو عدد مختلط باشند كدام عبارت درست است؟

$$||Z_{1}| - |Z_{p}|| \le |Z_{1}| - |Z_{p}|| ...$$

$$|Z_{1} - Z_{p}|| \le |Z_{1}| - |Z_{p}|| ...$$

$$|Z_{1} + Z_{p}|| \le ||Z_{1}|| - |Z_{p}|| ...$$

۱۸. کدامیک از دنبالههای زیر همگراست؟

$$\left\{\frac{e^n}{n^r}\right\} = \left\{\frac{\sin\left(\frac{n\pi}{r}\right)}{r^n}\right\} = \left\{r^n\cos(n\pi)\right\} = \left\{(-1)^n\frac{Lnn}{n}\right\}.$$

۱۹. از سریهای زیر کدامیک همگرایند؟

$$\sum_{n=1}^{+\infty} \frac{n^{r} + r}{n^{r} + rn + r} \cdot \sum_{n=1}^{\infty} \frac{Lnn}{n}$$

$$\sum_{n=1}^{\infty} \frac{n!}{n} \cdot \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n} \cdot \varepsilon$$

۲۰. بسط سری توان
$$|x| < 1$$
 $\sum_{n=0}^{\infty} (-1)^n x^n$ کدام است؟

$$\frac{1}{1+x} \rightarrow \frac{1}{1-x} \cdot \varepsilon \qquad \ln(1+x) \rightarrow \ln(1-x)$$

ا. فرض کنید تابع
$$y = \frac{ax+b}{(x-1)(x-r)}$$
 دارای ماکسیمم نسبی باشد دراین صورت مقادیر $y = \frac{ax+b}{(x-1)(x-r)}$ کنید.

- د. حجم حاصل از دوران ناحیه $y = \sin x$ درا حول محور $y = \sin x$ درید.
 - ۲. انتگرالهای زیر را بدست آورید.

$$\int \sqrt{1-x^{\mu}} dx \, dx \, dx = \int \frac{x^{\mu} + \mu x + 1}{x^{\mu} + x} dx$$

ی. الف. در صورت همگرائی انتگرال ناسره
$$xe^{-x^{t}}dx$$
 را بدست آورید. ب. $\lim_{t\to 0}(\mathbf{1}+x^{t})^{\cot x}$ را بدست آورید. $x\to 0$

ه. شعاع و بازه همگراثی سری توان
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{1+n^n}$$
 را پیدا کنید.

«توجه: استفاده از ماشین حساب مجاز نیست»

الف
$$y = -t^p + 1$$
 , $x = t^p + pt$ برابر است با:

 $\frac{dy}{dx}$, $t = 1$ برابر است با:

 $\frac{dy}{dx}$, $t = 1$ برابر است با:

 $\frac{dy}{dx}$, $\frac{dy}{dx}$,

انگاه $y=\int_{\infty}^{x}\sin e^{t}dt$ مرگاه $y=\int_{\infty}^{x}\sin e^{t}dt$ انگاه برابر است با

$$x \sin e^x$$

$$x\sin e^x$$
 . $x\cos e^x$. $\sin e^x$. $\cos e^x$.

$$\sin e^x$$

برابر است با:
$$\int_{-r}^{r} \sqrt{r-x^{r}} dx$$
 .۱۱

$$\frac{\mu\pi}{r}$$

$$\pi$$
 ب. π

۱۷. هرگاه
$$i+i$$
 برابر است با: Z^{1} برابر است با:

ست $x=\Lambda$ است $x=\Lambda$ است $x=\Lambda$ است $y=x^+$ در فاصله $x=\Lambda$ تا $x=\Lambda$ است $x=\Lambda$ است $x=\Lambda$ است $x=\Lambda$

$$\int_{0}^{\Lambda} \sqrt{9 + Fx} \, dx ...$$

$$\int_{0}^{\Lambda} \sqrt{r + 9x} \, dx \, dx$$

$$\int_{0}^{\Lambda} \sqrt{9 + Fx} \, dx ... \int_{0}^{\Lambda} \sqrt{F + 9x} \, dx ... \int_{0}^{\Lambda} \sqrt{F + 9x} \, dx ... \frac{1}{F} \int_{0}^{\Lambda} \sqrt{F + 9x} \, dx ...$$

با جمله عمومی $a_n = \frac{Lnn}{n}$ با جمله عمومی اباد $\{a_n\}$ برابر است با:

۲۰. کدامیک از سریهای زیر همگرا است؟

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} ...$$

$$\sum_{n=1}^{\infty} r^n \cdot \varepsilon$$

$$\sum_{n=1}^{\infty} r^n = \sum_{n=1}^{\infty} (-1)^n = \sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1$$